Perfect Welding

The current page does not exist in the target language.

Do you want to change the language and go to the home page or do you want to stay on the current page?

Change Language
Perfect Welding

Ergonomic welding—a contradiction in terms?

Product

9/13/2023
Whenever series production is not a consideration, welding is frequently carried out by hand. Welders often work in positions that strain the joints and muscles, for example when welding while forced to adopt awkward postures. This results in complaints such as sprains of the lower back or arms, which not only affect the health of welding professionals, but also come at the expense of the company’s productivity. Companies are therefore increasingly focusing on ergonomics during welding.
Ergonomic welding

What is meant by ergonomics?

Ergonomics has several meanings, one of which is quite literal: the term is derived from the Greek words “ergon” and “nomos”. “Ergon” means work and “nomos” translates as law. The word ergonomics can therefore be translated as “law of work”. Another significant (and practical) definition of the term “ergonomics” is the mutual adaptation of people and their working conditions. Ergonomists try to design the workplace in such a way that it does not impair the physical or mental health of workers. 

The same applies to welding workplaces. “These should be designed to meet the physical requirements of welders and enable predominantly focused work that does not cause fatigue,” emphasizes Peter Fronius, Head of Strategic Product Management Professional Welding Tools. “For example, by taking the height or arm reach of the welders into account. If workplaces do not satisfy ergonomic standards, the likelihood of sickness, injury, and absence through illness increases.” Of course, ergonomic risk factors cannot be eliminated every time and everywhere. This is the case for out-of-position welding, for example, whereby the aim must be to limit the time that the individual spends in the situation insofar as possible.

Risk factors when welding

Most causes of injury are not restricted to specific industries, but result from the movement and behavior patterns of welders. Typical here are repeatedly stretching the body, twisting the spine, being supported by or kneeling on hard surfaces, maintaining the same posture over a longer period of time, or a lack of rest. If such risk factors occur repeatedly (individually or in combination) they can lead to work-related musculoskeletal disorders (MSDs), in other words injuries and diseases that affect muscles, nerves, tendons, ligaments, joints, intervertebral discs, skin, subcutaneous tissue, blood vessels, or bones. In addition to the causes previously mentioned, unfavorable environmental conditions such as extreme temperatures can also contribute to the development of MSDs, while personal risk factors such as physical condition, pre-existing illnesses, or age also come into play.

Work-related musculoskeletal disorders in welders

These disorders usually develop as a result of micro-traumas acting on the body over time and causing conditions such as lumbar slipped discs—the most common herniated discs due to the overall weight of the spine sitting most heavily on the two lower discs. These intervertebral discs consist of flexible, annular cartilage that contains semi-liquid gel. If a welder repeatedly lifts heavy components while adopting an unfavorable posture, this cartilage can degrade and tear over time. This results in the intervertebral disc bulging, pressing on a spinal nerve, and causing severe pain. 

The most common musculoskeletal disorders include back injuries, bursitis, inflammation of the tendon and tendon sheath, carpal tunnel syndrome, and thoracic outlet syndrome. This disorder, which can occur due to compression of nerves, arteries, or large veins in the neck and chest area, is very painful and can be caused by frequent overhead welding.

Ergonomics and welding are not contradictory

Time and again, welders are forced to adopt unfavorable postures for a variety of tasks—frequently over long periods of time. It is often easier for the welder to move around large, heavy components themselves than to move the component into the optimum welding position. Is it therefore paradoxical to talk about ergonomics and welding in the same sentence? Absolutely not. Because despite all the hindrances, there are plenty of ways in which welding companies can design workplaces and work equipment ergonomically. Effort that is generally rewarded by a healthier workforce, better morale, higher productivity, and enhanced product quality. For example, height-adjustable welding tables and stools are tried and tested means of adapting the welding height to the physical requirements of welders.  

Ideal for long seams: welding carriages

“Rather than welding meters of welds by hand in the overhead position, rail-guided welding carriages can often be used. The same applies to longitudinal seams and circumferential welds of large dimensions, which can be joined either with rail-guided carriages or with magnetic welding carriages. If mechanized systems like these are used, professional welders essentially only have to operate the remote control, while standing upright and with no physical exertion required,” explains Christian Neuhofer, Product Manager Fronius Welding Automation.

The compact Fronius FlexTrack 45 Pro can be used in a wide range of applications. Three different rail types are available to suit different requirements. In industries where surface geometries vary, such as shipbuilding or container construction, FlexTrack 45 Pro welding carriages are perfect for all-round use.

Link: FlexTrack 45 Pro (fronius.com)

Welding 24/7 without physical effort 

Nowadays, cobot welding cells mean that the automated welding even of small batch sizes is cost-effective. Thanks to its enormous flexibility for joining different components, the compact CWC-S from Fronius is the ideal tool for this. “It is easy to use, even without programming knowledge, and there is no physical effort required,” Neuhofer continues: “Your software remembers the welding sequences of the individual components, which are mounted either on a welding table or turn-tilt positioner. The components are welded fully autonomously in a protective cabin with an automatically closing and opening glare protection screen, which protects the welder from arc radiation—around the clock if necessary. If desired, the CWC-S can also be equipped with a fume extraction system.”

Link: CWC-S COBOT welding cell (fronius.com)

Heavy components should be lifted while fastened to lifting aids, such as indoor cranes, in order to protect the muscles and spine. This rule essentially applies to all lifting activities related to welding, because overloading the musculoskeletal system not only endangers health in the long term, but can also result in instant injuries such as lumbar syndrome, also commonly referred to as lumbago. 

Orbital welding systems relieve the spine

Pipelines that are often used in the food industry or in power plant construction are produced using orbital welding, whereby the welding torch is guided around the pipe. They often have to be joined at unfavorable heights and positions, which can have an adverse effect on the welder’s back. Orbital systems, such as the open and closed welding heads from Fronius, provide a solution. If the pipe to be joined is clamped, the welding torch automatically moves around the component and welds the seam with consistently high quality. 

Link: Orbital welding systems

Ergonomics at Fronius 

The products of the Austrian technology pioneer have made a name for themselves not only for their technological finesse, but also for their user-friendliness. All welding torches, for example, are characterized by their low weight, comfortable handles, and user interfaces adapted to the tasks at hand. The ergonomic handles with non-slip components fit comfortably in the hand during welding and allow for safe and simple welding torch guidance, with ball joints facilitating optimum torch adjustment. Furthermore, the weight distribution of all torch components is well balanced, which promotes fatigue-free welding. With options such as a pistol grip, button extension, and heat shield available, our welding torches can be adapted to the personal use and safety needs of the welder. 

Link: Fronius power sources and welding systems

Fronius also keeps usability in mind at all times when it comes to welding systems. In all compact systems, for example, the wirefeeder is integrated directly into the welding system housing, making them easier to use, especially when it comes to manual welding tasks.

Modularity combined with personal configuration and intuitive operating procedures are the keywords that we always focus on with our welding systems. The easier they are to use, the better professional welders can concentrate on the welding task at hand and keep their risk of injury low. Examples here include the systems in the TPS/i, TransSteel, and iWave series, whose touch-sensitive displays and dials are not only intuitive, but also easy to operate while wearing welding gloves. 

Of course, the worker’s muscles and spine must also be protected, which is why Fronius welding systems have customized transport trolleys that accommodate the welding system, cooling unit, wirefeeder, and gas cylinder. Easy to move around, they are better pushed than pulled, because constant pulling has a negative effect on the skeletal muscles.

Learning to weld without risking injury

With the Fronius Welducation Simulator, trainees can familiarize themselves with welding without any risk of injury. They create different welds without putting themselves at risk due to arc radiation and welding fume, using ergonomically shaped welding torches and while adopting different welding positions, including out-of-position welding postures. The components used for the different simulations are not only handy, they are also made of lightweight plastic, which protects the muscles and spine of future welding experts.

In summing up, there are many ways in which to make the working environment of professional welders as safe and ergonomic as possible, and in doing so positively influence the working conditions and motivation of employees. This in turn enhances not only cost effectiveness for the company but also public perception.

Link: Welducation Simulator (fronius.com)